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Abstract

Uranium is a ubiquitous metal that is nephrotoxic at high doses. Few epidemiologic studies have 

examined the kidney filtration impact of chronic environmental exposure. In 684 lead workers 

environmentally exposed to uranium, multiple linear regression was used to examine associations 

of uranium measured in a four-hour urine collection with measured creatinine clearance, serum 

creatinine- and cystatin-C-based estimated glomerular filtration rates, and N-acetyl-β-D-

glucosaminidase (NAG). Three methods were utilized, in separate models, to adjust uranium levels 

for urine concentration - μg uranium/g creatinine; μg uranium/L and urine creatinine as separate 

covariates; and μg uranium/4 hr. Median urine uranium levels were 0.07 μg/g creatinine and 0.02 

μg/4 hr and were highly correlated (rs =0.95). After adjustment, higher ln-urine uranium was 

associated with lower measured creatinine clearance and higher NAG in models that used urine 

creatinine to adjust for urine concentration but not in models that used total uranium excreted 

(μg/4 hr). These results suggest that, in some instances, associations between urine toxicants and 

kidney outcomes may be statistical, due to the use of urine creatinine in both exposure and 

outcome metrics, rather than nephrotoxic. These findings support consideration of non-creatinine-

based methods of adjustment for urine concentration in nephrotoxicant research.
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Introduction

Identification of environmental nephrotoxicants is increasingly important as the world-wide 

prevalence of chronic kidney disease (CKD) grows (1). Uranium, a naturally occurring 

radioactive element, is an important consideration in this regard. The US National Health 

and Nutrition Examination Survey (NHANES), a population sample considered 

representative of the non-military, non-institutionalized US general population, has 

consistently detected uranium in the urine of a majority of study participants (2). Exposure 

in the general population occurs mainly through ingestion of natural uranium in drinking 

water and in food grown in contaminated soil. Exposure to uranium via contaminated 

ground water is a global concern as elevated levels have been detected in a wide range of 

geographic areas including the United States, Canada, Scandinavian countries, central 

Australia, India, and South Korea (3–5). The main industrial uses of uranium have been as a 

power source for nuclear reactors (3) and as depleted uranium used in the manufacture of 

munitions.

Uranium is nephrotoxic at acute, high-dose exposures in humans and animals (5, 6). 

However, despite widespread environmental exposure, few data on associations between 

chronic, low-level uranium exposure and kidney outcomes are available. Limited evidence 

indicates elevated levels of kidney early biological effect markers in populations chronically 

exposed to relatively low levels of uranium (5–7). However, associations with glomerular 

filtration measures (GFR) have been inconsistent. Furthermore, the nephrotoxic effects of 

exposure to multiple metals are relatively unknown; populations co-exposed to uranium, 

lead and/or other nephrotoxic metals may be at increased risk for kidney damage. Thus, the 

data to date indicate considerable potential for nephrotoxicity associated with environmental 

uranium exposure and support the need for additional epidemiologic research. To address 

this knowledge gap, we performed a cross-sectional analysis of associations between urine 

uranium levels and kidney outcomes in 684 current and former lead workers in the Republic 

of Korea in whom cadmium, antimony, and thallium associations with kidney outcomes 

have previously been analyzed (8–10). Kidney outcomes examined include these traditional 

kidney filtration rate measures: serum creatinine- and cystatin-C-based estimated glomerular 

filtration rates (eGFR) and measured creatinine clearance. N-acetyl-β-glucosaminidase 

(NAG), an enzyme located in the lysosomes of the proximal tubule cells, was examined as 

an early biologic effect marker for the proximal tubule.

Materials and Methods

Study Overview and Design

We performed a cross-sectional analysis of data from current and former inorganic lead 

workers who were voluntary participants in a longitudinal study established to look at the 

health effects of occupational lead exposure. Data used for this analysis were obtained in the 
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fourth evaluation conducted between April 2004 and September 2005. All participants 

provided written, informed consent and the study protocol was approved by Institutional 

Review Boards at the SoonChunHyang University School of Medicine and the Johns 

Hopkins University Bloomberg School of Public Health.

Study Population

As previously described (9, 11, 12), participants were recruited via medical surveillance 

programs in 1997–9 for the first enrollment phase of the cohort study and 2004–5 for the 

second phase of the study. The population is 100% Korean. Inclusion criteria were 

occupational exposure to lead and, for phase II enrollees, age ≥ 40 years in order to enrich 

the study with participants with increased risk for adverse kidney outcomes. There were no 

medical exclusionary criteria. In order to optimize study data for both cross-sectional and 

longitudinal analyses, a urine metals panel, including uranium, thallium, and cadmium, was 

measured in the fourth evaluation of the 712 workers who participated in both the fourth and 

fifth evaluations. Workers from a primary smelter (n=28) were excluded from this analysis 

due to their potentially wider range of occupational metal exposures. Thus, cross-sectional 

analysis of data in the remaining 684 workers was the focus of the current analysis.

Data Collection

As previously described (9), data collection and biologic specimens included a standardized, 

interviewer-administered questionnaire; blood pressure obtained with the IntelliSense™ 

blood pressure monitor (Model HEM-907; Omron; Vernon Hills, IL); height and weight; a 

blood sample (for serum creatinine, cystatin C and blood lead); a four-hour urine collection 

(for uranium, thallium, cadmium and creatinine levels); a spot urine sample collected just 

before beginning the four-hour urine collection (for NAG and creatinine); and tibia lead via 
X-Ray Fluorescence. Four hour urine collections were obtained over the course of the day 

with start times from 7 am to 8 pm; 66% were started between 8 am and 11:59 am and an 

additional 28% were started between 12 pm and 3:59 pm.

Metals Exposure Assessment

Urine specimens were analyzed for metals in the Trace Elements section of the Laboratory 

of Inorganic and Nuclear Chemistry at the New York State Department of Health’s 

Wadsworth Center (Albany, NY, USA). A multi-element method based dynamic reaction 

cell-inductively coupled plasma-mass spectrometry (DRC-ICP-MS) was used (13) as 

previously described (Weaver, et al., 2011). The method detection limit (MDL) for uranium 

was calculated according to International Union of Pure and Applied Chemistry (IUPAC) 

guidelines (14). The MDL was calculated as three times the standard deviation measured in 

a urine matrix blank or low-level sample for a minimum of 10 independent analytical runs 

and is typically 0.003 μg/L for urinary uranium. At the time of analysis for this study, the 

uranium MDL for urine was 0.001 μg/L, we have found the MDL to vary between 0.001 to 

0.005 μg/L over the past 6 years. The limit of quantitation (LOQ) for uranium in urine, 

defined as 10 times the standard deviation measured in a urine matrix blank or low-level 

sample as described above is approximately 0.009 μg/L, but may vary from 0.003 to 0.015 

μg/L. Urine-based internal quality control (IQC) materials were analyzed before, during and 

after every analytical run. For uranium, the mean coefficient of variation (CV) of the IQC 
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samples over the 5-month period in which the samples were assayed was 19% at 0.03 μg/L 

(n=74), 13% at 0.06 μg/L (n=75), 10% at 0.09 μg/L (n=63). Method accuracy was assessed 

via analysis of National Institute of Science and Technology (NIST) Standard Reference 

Material (SRM) 2670a Toxic Elements in Urine (Freeze-Dried) for uranium content. Found 

values were 0.099 ± 0.006 μg/L (n=22) (certified value 0.102 ± 0.002 μg/L) in the Low 

Level and 4.88 ± 0.07 μg/L (n=22) (certified value 4.997 ± 0.071 μg/L) in the High Level. 

The Laboratory also successfully participates in the external QC program operated by the 

Institut National de Santé Publique du Québec (INSPQ), Le Centre de Toxicologie du 

Québec’s (CTQ) Intercomparison Program that includes uranium in urine. The laboratory 

routinely achieved a performance of ± 5% from the assigned target value on urine uranium 

challenges from CTQ.

Blood lead was measured with a Hitachi 8100 Zeeman background-corrected atomic 

absorption spectrophotometer (15) (Hitachi Ltd. Instruments, Tokyo, Japan). Tibia lead 

levels were assessed via a 30-minute measurement of the left mid-tibia diaphysis 

using 109Cd in a back-scatter geometry to fluoresce the K-shell X-rays of lead. The lead X-

rays were recorded with a radiation detector and then quantified and compared to calibration 

data to estimate the concentration of lead in bone (16–18).

Kidney Outcome Assessment

Serum and urine creatinine were measured with a Dimension clinical chemistry system 

using a Flex reagent cartridge in a modified kinetic Jaffe assay (model RxL; Dade Behring, 

Glasgow, DE, USA). Serum cystatin C was measured via an automated Dade Behring 

nephelometry assay on a Dimension Vista Lab System (Siemens Healthcare Diagnostics, 

Deerfield, IL, USA). The PPR NAG test kit was used to determine urine NAG 

concentrations (PPR Diagnostics Ltd, London, UK). Median inter-day CV for serum 

creatinine and cystatin C and urinary NAG samples run in duplicate were all < 10%.

Calculated kidney outcomes included measured creatinine clearance using the four-hour 

collection:

• ([urine creatinine in mg/dL × urine volume in mL]/serum creatinine in mg/dL) / 

collection time in minutes)

the Modification of Diet in Renal Disease (MDRD) creatinine-based eGFR (19, 20):

• 186.3 * (serum creatinine)−1.154 * (age)−0.203 * 0.742 (if female)

and a multi-variable cystatin-C-based equation (21):

• 127.7 × serum cystatin C−1.17 × age−0.13 × 0.91 if female

Statistical Analysis

The goals of the analysis were to: 1) evaluate associations between urine uranium levels and 

kidney outcomes in current and former lead workers, while controlling for a range of 

covariates including other metals (blood and tibia lead and urine thallium and cadmium); 

and, 2) evaluate consistency of those associations in models that differed by method of 

adjustment for urine concentration. Statistical analysis was completed using statistical 

Shelley et al. Page 4

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2017 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



software from StataCorp LP (College Station, TX) (22). As previously described (8) skewed 

variable distributions (urine uranium, thallium, cadmium, creatinine, and NAG) were ln-
transformed to minimize influential outliers and comply with statistical assumptions.

In separate multiple linear regression models, uranium measured in the four-hour urine 

collection was evaluated using three different methods to adjust for urine concentration: the 

traditional approach in which the metal concentration is adjusted for urine concentration by 

dividing by urine creatinine (μg uranium/g creatinine); a more recent approach in which the 

urine metal (μg/L) and creatinine (g/L) are included as separate covariates in the regression 

model (23); and a non-creatinine-based approach using the total amount of uranium excreted 

during the four-hour urine-collection (urine uranium [μg/L] × total urine volume [L] × 4/

actual collection time [hrs] resulting in μg uranium/4 hr).

Initial regression models included a priori variables (age, gender, and BMI [weight in 

kilograms divided by the square of height in meters] and urine uranium (as ln-transformed 

μg/g creatinine, or as ln-transformed μg/L and ln-urine creatinine as separate covariates, or 

as ln-transformed μg/4 hrs). Additional covariates considered for inclusion were diabetes 

and hypertension (both based on participant report of physician diagnosis or medication 

use); regular analgesic use (based on questionnaire data on medication usage); self-reported 

work status (current vs. former lead worker); lead job duration (years); study status (phase I 

vs. phase II enrollee); systolic and diastolic blood pressure (average of three measures); 

tobacco use (smoking status: never, former, current); smoking dose ([cigarettes per day × 

years of smoking] in quartiles for current smokers and dichotomized for former smokers); 

alcohol consumption (never, former, current); education (< middle school graduate, < high 

school graduate, high school graduate, > high school); and annual income (≤ 10, 10–20, 20–

30, 30–40, and > 40 million won). Variables were retained in the final model if they 

substantially changed the uranium regression coefficient or the explanatory value (r2) of the 

model for any of the kidney outcomes; were statistically significant (p ≤ 0.05); or were 

relevant based on a priori knowledge or hypotheses inherent to this study (e.g. ln-urine 

cadmium). Blood and tibia lead and urine thallium and cadmium were added to the final 

models after all other covariates were selected.

Models were evaluated for linear regression assumptions and the presence of outlying points 

using augmented component-plus-residual plots, added-variable plots, and residual versus 

predicted plots (24, 25) and repeated without outliers when applicable. Our goal in removing 

outliers was to avoid having results driven by the 1–2% of the population who have extreme 

values for outcomes (abnormal kidney function) and/or exposure metrics. As previously 

published (12), a standard set of outlier data has been identified and removed from the 

majority of analyses done in this population to date. These data are from workers with 

known kidney disease. Other outliers related to the metals in the current analyses were also 

removed. Models were also assessed for collinearity through examination of variance 

inflation factors, all of which were below 4.3.
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Results

Information on demographics, uranium and other metal dose biomarkers, kidney outcomes, 

and selected covariates is presented in Table 1. Males comprised 78.2 % (n=535) of the 

population. Median urine uranium levels were 0.07 μg/g creatinine and 0.02 μg excreted in 

four hours. Median levels of urine thallium and cadmium were 0.39 and 0.83 μg/g creatinine 

and 0.09 and 0.19 μg/4 hr, respectively.

Urine creatinine-adjusted urine metals were correlated with their respective total metal 

excreted concentrations (rs ≥ 0.8; p < 0.001 for all; Table 2). Other metal correlations are 

shown in Table 2. As previously published (8), the three GFR measures (MDRD eGFR, 

Cystatin-C-based eGFR, and measured creatinine clearance) were significantly correlated (p 

< 0.001); NAG was not correlated with MDRD eGFR but was negatively correlated (p < 

0.001) with the two other glomerular filtration measures. Urine creatinine, measured in the 

four-hour urine specimen, was correlated with measured creatinine clearance, spot urine 

creatinine (used for NAG adjustment), and NAG (rs= 0.33, 0.48, and −0.12 respectively; 

p<0.01 for all), but not with eGFR as determined by either the serum creatinine- or cystatin-

C-based equations.

Associations of Urine Uranium with Kidney Outcomes

In the two models that used urine creatinine to adjust for urine concentration, higher ln-urine 

uranium was associated with lower measured creatinine clearance and higher NAG after 

adjustment for age, sex, BMI, current vs. former lead worker status, phase I vs. II study 

entry, income, education, alcohol consumption, smoking dose, diastolic blood pressure, 

blood lead, tibia lead, ln-urine thallium and cadmium (Table 3; Models 1 and 2). In Model 1, 

ln-urine creatinine was entered as a separate covariate, and in Model 2, uranium and the 

other urine metals were divided by urine creatinine and the resulting variable, expressed in 

μg/g creatinine, was ln-transformed and entered so that ln-urine creatinine was not entered as 

a separate covariate. However, these associations were no longer significant when the 

uranium concentration metric was entered as μg excreted in the four-hour urine collection 

(μg/4 hr) (Table 3; Model 3). Attenuation was much greater for measured creatinine 

clearance than NAG. Uranium was not associated with either creatinine- or cystatin-C-based 

eGFR in any of the three models (Table 3) nor with serum creatinine or cystatin C (data not 

shown). Results were consistent in a priori models that adjusted for age, sex, and BMI and, 

in models with ln-urine uranium entered as μg/L, ln-urine creatinine. Specifically, significant 

associations with measured creatinine clearance and NAG were observed in the a priori 
models that used urine creatinine-based methods to adjust for urine concentration but not in 

those that used total uranium excreted (μg/4 hrs) (data not shown).

We also removed ln-urine creatinine from fully adjusted models of measured creatinine 

clearance and NAG (Model 1; Table 3). The ln-uranium association with NAG was no 

longer significant (β [95% CI] = 0.02 [−0.02, 0.05]). However, the ln-uranium association 

with measured creatinine clearance was attenuated but remained significant (β [95% CI] = 

−2.0 [−3.7, −0.3]). When ln-urine creatinine was added to fully adjusted models of measured 

creatinine clearance and NAG in which ln-uranium was entered as μg/4 hr (Model 3; Table 

3), the ln-uranium associations remained nonsignificant in both models (data not shown).
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Discussion

We examined associations of urine uranium concentrations with four kidney outcome 

measures (three filtration measures [measured creatinine clearance and serum creatinine- 

and cystatin-C-based glomerular filtration rates] and NAG, a proximal tubule early 

biological effect marker) to determine the impact of environmental exposure to uranium on 

kidney function in lead-exposed workers. We employed three different methods of 

adjustment for urine concentration and compared consistency of results across the three 

respective linear regression models. Distinct differences in the associations were observed 

by method of adjustment for urine concentration. Ln-urine uranium was significantly 

associated with lower measured creatinine clearance and higher NAG in the two models that 

used urine creatinine to adjust for urine concentration, one in which urine creatinine was 

included as a separate covariate in the regression model and the other using the more 

traditional creatinine-adjusted metal (i.e., urine uranium concentration expressed in μg/g 

creatinine) as a single variable. However, associations were no longer significant when the 

third urine concentration adjustment method (total uranium excreted [μg/4 hr]) was used, 

although attenuation was much greater for measured creatinine clearance than for NAG.

Uranium is a ubiquitous heavy metal naturally found in rocks and soil. It is mined and used 

as an energy source and as depleted uranium in military munitions. Environmental exposure 

to natural uranium occurs mainly through ingestion of ground water or food (7, 26). Urine is 

the primary route of excretion for absorbed uranium (7, 26). An estimated 66% of uranium 

that enters the human bloodstream is rapidly excreted within 24 hours and nearly 90% 

within a month. The remainder is primarily distributed to bone, and to a lesser extent, liver 

and kidneys (27). The half-life in bone may range from months to years. Therefore, urine 

uranium concentration is considered to be a recent exogenous dose measure with a small 

contribution from cumulative endogenous exposure (26). Median and 95th percentile urine 

uranium levels in our population were 0.070 and 0.531 μg/g creatinine compared to 0.005 

and 0.026 μg/g creatinine, respectively, in 2005–2006 NHANES participants (28).

Nephrotoxicity has been reported in animal studies using a variety of uranium compounds. 

Morphological abnormalities and dysfunction of the proximal tubule and glomerulus have 

been reported in acute and subacute studies with proximal tubule damage reported from 

chronic exposure (5–7, 29). Decreased creatinine clearance and increased proteinuria have 

been reported in acute high dose human case reports, such as in industrial accidents (6). 

Epidemiological studies have reported associations between uranium and adverse proximal 

tubule effects. Beta 2-microglobulin is the proximal tubule biomarker that has been most 

consistently associated with uranium exposure in humans (5).

Epidemiological studies examining associations between uranium exposure and glomerular 

filtration measures are scarce and the results are inconsistent (Table 4). Findings range from 

no associations (30–34); to associations consistent with nephrotoxicity (increased serum 

creatinine) (35); to associations contrary to that expected with nephrotoxicity (i.e., lower 

serum creatinine and/or higher creatinine clearance with higher exposure) (36–41). In the 

studies in Table 4 in which NAG was included, no significant associations were observed.
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In the data herein, increased ln-urine uranium was associated with decreased measured 

creatinine clearance and increased NAG, but only if urine concentration adjustment involved 

the use of urine creatinine and not if total uranium excreted (μg/4 hr) was used as the 

exposure metric. This inconsistency is all the more perplexing since creatinine adjusted urine 

uranium (μg/g creatinine) was highly correlated with total uranium excreted (μg/4 hr); thus, 

consistent results among these exposure metrics would be expected. This suggests that the 

significant associations observed may be statistical aberrations due to the use of urine 

creatinine in both exposure and outcome metrics. Urine uranium concentration (μg/L) is 

directly divided by the four-hour urine creatinine concentration (g/L) when entered as μg/g 

creatinine; the equivalent effect is achieved when both variables are entered separately into 

the model. The same urine creatinine value was also used to calculate measured creatinine 

clearance: ([urine creatinine (expressed as mg/dL for this equation) × urine volume in mL]/

serum creatinine in mg/dL) /collection time in minutes. Futhermore, NAG was directly 

divided by the spot urine creatinine, which was correlated with the four-hour urine 

creatinine, as noted above. Thus, inverse and positive associations of urine uranium 

concentration with measured creatinine clearance and NAG, respectively, are potentially 

consistent with the use of urine creatinine in these variables. Supporting this hypothesis is 

the fact that the associations of excreted uranium (μg/4 hr) with measured creatinine 

clearance and NAG remain non-significant when urine creatinine is added to those models. 

However, removing urine creatinine from the model of measured creatinine clearance in 

which it is added as a covariate for urine concentration adjustment reduces the association 

but does not completely attenuate it.

Similarities in renal handling of urine proteins used as kidney outcome markers and protein 

bound metals were recently implicated as causal factors for observed associations between 

the two (42). In addition to glomerular filtration, creatinine is secreted in the proximal tubule 

of the kidney; organic cation and anion transporters are involved in this process (43–45). 

Uranium is a proximal tubular toxicant, however, its transport mechanisms are not well 

defined. Recent data suggest that a sodium-dependent phosphate co-transporter may be 

involved (46). Thus, currently available information does not allow a determination of the 

possible role of kidney processing in our results.

To our knowledge, there are no published studies that have compared results among 

creatinine-based methods of adjustment for urine concentration and total uranium excreted 

(μg/4 hr). However, Kurrtio et al, (2006) found no association between creatinine unadjusted 

urine uranium (μg/L) and NAG, serum cystatin C, or measured creatinine clearance, noting 

that results were similar when using creatinine-corrected urinary uranium (μg/g creatinine) 

and also when using uranium exposure measures that did not require adjustment for urine 

concentration (e.g., uranium in hair and toenails). Thus, their results are not consistent with 

our findings. Other evidence also indicates that the statistical hypothesis, if applicable, does 

not affect all urine biomarkers uniformly. Urine creatinine-adjusted thallium, cadmium, and 

antimony were not associated with measured creatinine clearance in previous analyses of the 

lead workers herein although associations with other creatinine-based kidney outcomes were 

observed (8, 9). Furthermore, the most common study design in nephrotoxicant research is 

analysis of associations between urine toxicants and kidney early biological effect markers, 

also measured in urine. Most adjust for urine concentration using urine creatinine and such 
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publications routinely report some null associations. In addition, when urine creatinine was 

removed from the two significant models in Table 3, Model 1, uranium remained associated, 

although attenuated, in the measured creatinine clearance model. Our group has published 

three recent articles in the lead worker population in which the directions of urine metal 

associations have been unexpected (8–10). Similar results have been observed with urine 

cadmium (47) and other urine exposure measures in recent NHANES analyses (48). Overall, 

these recent results suggest that the use of urine biomarkers is more complex than has been 

previously appreciated.

In conclusion, we found significant associations between urine uranium and measured 

creatinine clearance and NAG in models that used urine creatinine to adjust for urine 

concentration, but not in those using the total uranium excreted metric (μg/4 hr), an approach 

to adjust urine biomarkers for urine concentration that is less commonly employed in 

occupational and environmental studies due to the need for a timed urine collection. 

Considered in isolation, the results obtained with urine creatinine adjustment suggest 

uranium nephrotoxicity. However, when reviewed in conjunction with results from the 

excreted uranium (μg/4 hr) models, alternative interpretations must be considered, although 

the more limited attenuation observed with NAG could still be interpreted as supportive of 

nephrotoxicity. Our results suggest that some associations between urine toxicants and 

kidney outcomes may be statistical, due to the use of urine creatinine in both exposure and 

outcome metrics, rather than nephrotoxic. These findings support consideration of non-

creatinine-based methods of adjustment for urine concentration as well as non-urine based 

exposure measures (e.g., blood levels) in nephrotoxicant research. Additional studies that 

collect urine samples over a range of times, such as spot, overnight and 24-hour, and 

examine the utility of various urine concentration adjustments, e.g., urine creatinine, specific 

gravity, and osmolality, as recently published by Akerstrom and colleagues (49) are essential 

in this regard.
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Abbreviations

BMI body mass index

Cd cadmium

Cr creatinine

CV coefficient of variation

DRC-ICP-MS dynamic reaction cell-inductively coupled plasma-mass 

spectrometer
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DU depleted uranium

eGFR estimated glomerular filtration rate

GFR glomerular filtration rate

HNO3 nitric acid

ICP-MS inductively coupled plasma–mass spectrometer

IQC internal quality control

ln- natural logarithm

m2 meters squared

MDL method detection limit

MDRD Modification of Diet in Renal Disease

mg/dL milligrams per deciliter

mg/L milligrams per liter

mL milliliter

mL/min milliliters per minute

NAG N-acetyl-β-D-glucosaminidase

NHANES National Health and Nutrition Examination Survey

NIST National Institute of Standards and Technology

NU natural uranium

SD standard deviation

μg/g micrograms per gram

μmol/L micromoles per liter
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Table 1

Selected demographic, exposure, and health outcome measures in 684 lead workers1

Characteristic N (%)

Male 535 (78.2)

Current workers 450 (65.8)

Diabetes (yes) 25 (3.7)

Hypertension (yes) 84 (12.3)

Current smokers 294 (43.0)

Median Mean (SD)

Age, years 46.5 47.6 (8.0)

BMI, kg/m2 24.1 24.2 (2.9)

Systolic blood pressure, mm Hg 121.5 123.6 (15.7)

Diastolic blood pressure, mm Hg 74.5 75.1 (12.1)

Blood lead, μg/dl 21.5 23.2 (14.3)

Tibia lead, μg Pb/g bone mineral* 20.0 27.1 (29.3)

Uranium, μg/g creatinine 0.07 0.13 (0.18)

Uranium, μg/4 hr 0.02 0.03 (0.04)

Thallium, μg/g creatinine 0.39 0.44 (0.23)

Thallium, μg/4 hr 0.09 0.10 (0.06)

Cadmium,μg/g creatinine 0.83 1.0 (0.6)

Cadmium, μg/4 hr 0.19 0.21 (0.10)

MDRD GFR, ml/min/1.73 m2 95.8 97.7 (19.4)

Cystatin-C-based eGFR, ml/min/1.73 m2 112.7 112.0 (17.8)

Measured creat. clearance, ml/min 110.4 110.8 (30.9)

NAG μmol/h/g creatinine 318.1 386.3 (282.1)

*
n=678

1
modified from (8)
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